Minerals: Building Blocks of Rocks

Reading Assignment

- Chapter 2 Matter and Minerals
- Write down answers to the Concept Check questions at the end of each section.,

Learning Objectives

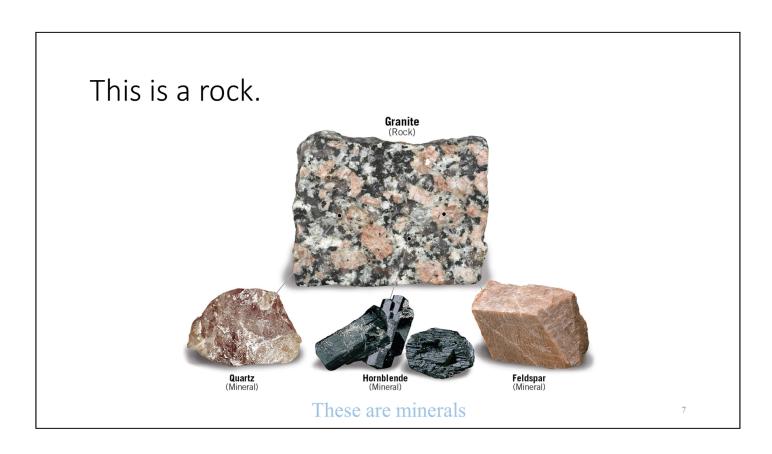
• https://macearthscience.weebly.com/31-minerals.html

2.1 Minerals: the building blocks of rocks

- Definition of a mineral
 - Natural
 - Inorganic
 - Solid
 - Possess an orderly internal structure of atoms
 - Have a definite chemical composition
- Mineraloid lacks an orderly internal structure
 - e.g.: opal, amber, obsidian

This is a mineral:

5


- It's a quartz crystal and it is Naturally occurring, Inorganic (not living), Solid, Possess an orderly internal structure of atoms, and has a definite chemical composition

This is a mineraloid:

6

- This is Opal (pretty, no?) and it lacks a definite internal structure.

- Granite is a rock and is an aggregate of different minerals including the ones shown. Can also contain mica and some other minerals.

- Slides removed.

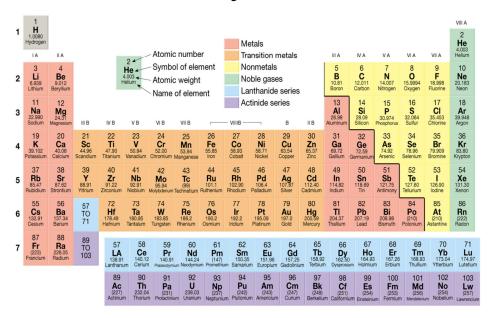
What happens if I cut this in half?

- Again?

9

I wind up with an ATOM!

2.2 Composition and structure of minerals

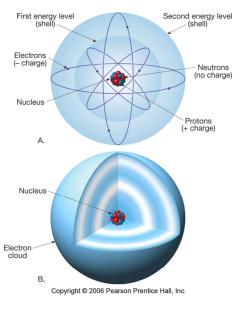

• Elements

- Basic building blocks of minerals
- (well, of everything really...)

• Atoms

- Smallest particles of matter that...
- Have all the characteristics of an element

Periodic table of the Elements


How atoms are constructed

- Nucleus central part of an atom that contains
 - Protons positive electrical charges
 - Neutrons neutral electrical charges
- Energy levels, or shells
 - Surround nucleus
 - Contain electrons negative electrical charges

12

This is a review of basic chemistry.

Simplified view of the atom

How atoms are constructed

- Atomic number
 - the number of protons in an atom's nucleus
- Bonding of atoms
 - Forms a compound with two or more elements
 - lons are atoms that gain or lose electrons
- Isotopes
 - Have varying number of neutrons

How atoms are constructed

- Isotopes
 - Have different mass numbers the sum of the neutrons plus protons
 - Many isotopes are radioactive and emit energy and particles

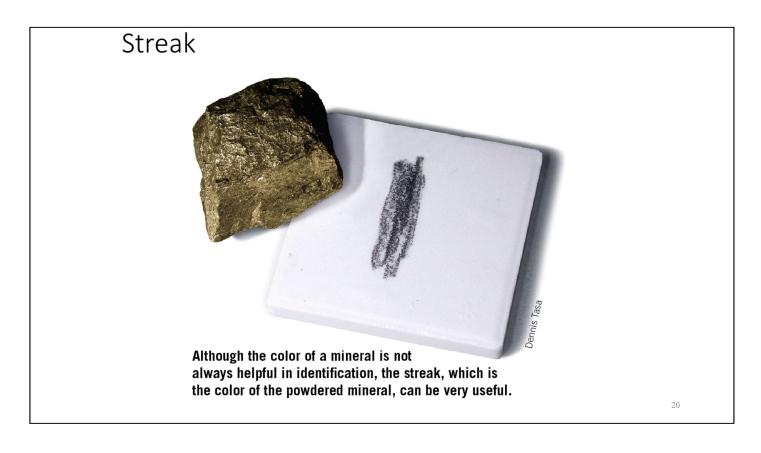
2.4 Properties of Minerals

- Physical properties of minerals
 - Crystal form
 - Luster
 - Color
 - Streak
 - Hardness
 - Cleavage

The mineral quartz often exhibits good crystal form

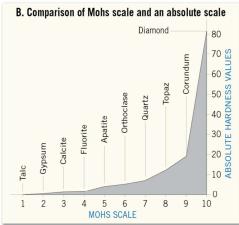
A.

Pyrite (fool's gold, FeS₂) displays metallic luster



18

- It looks like C3PO from Star Wars.


- Notice the crystal structure of fluorite is the same regardless of the color of the sample. The color variations are due to impurities found in each sample.

- Streak is much more reliable than color.

Hardness: Mohs Scale

Three examples of perfect cleavage – fluorite, halite, and calcite

22

- Cleavage means that the mineral tends to break or "cleave" along certain planes.

Minerals

- Physical properties of minerals
 - Fracture
 - Specific gravity
 - Other properties
 - Taste
 - Smell
 - Elasticity
 - Malleability

23

Fracture is the characteristic way a mineral breaks. The **difference between cleavage and fracture** is that **cleavage** is the break of a crystal face where a new crystal face is formed where the mineral broke, whereas **fracture** is the "chipping" of a mineral.

Specific gravity is basically how dense a substance is.

Elasticity is the ability of a material to "spring back" after stress is removed.

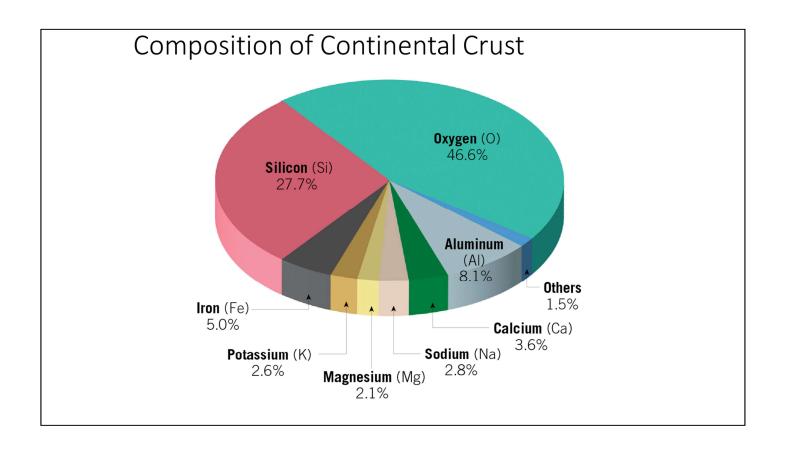
Malleability is how well a substance can be molded. Most metals are malleable.

Conchoidal fracture

Copyright © 2006 Pearson Prentice Hall, Inc.

Minerals

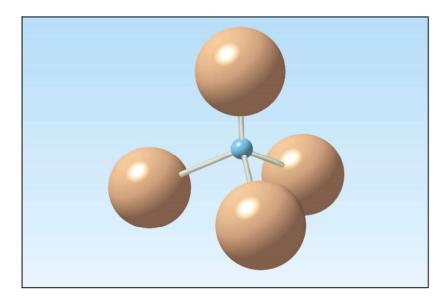
- Physical properties of minerals
 - Other properties
 - Feel
 - Magnetism
 - Double Refraction
 - Reaction to hydrochloric acid

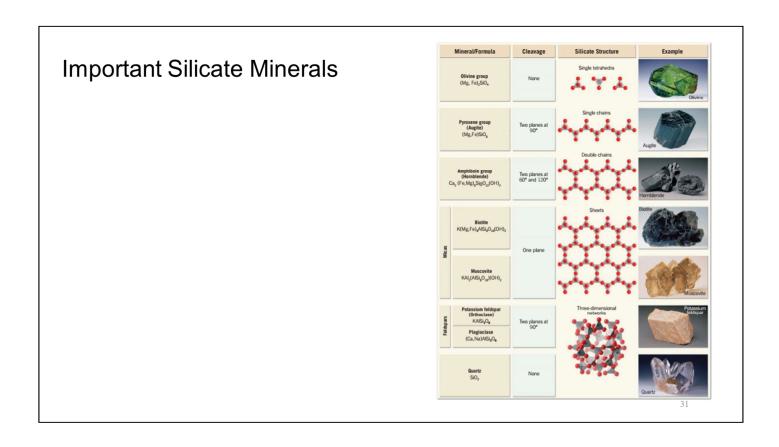

- Graphite has a "greasy" feel.
- Magnetite (a form of iron ore) is magnetic.
- **Double refraction**. Optical phenomenon exhibited on certain **minerals** where a light ray enters the crystal and splits up into two separate rays. Calcite does this.
- Carbonate minerals react with HCl.

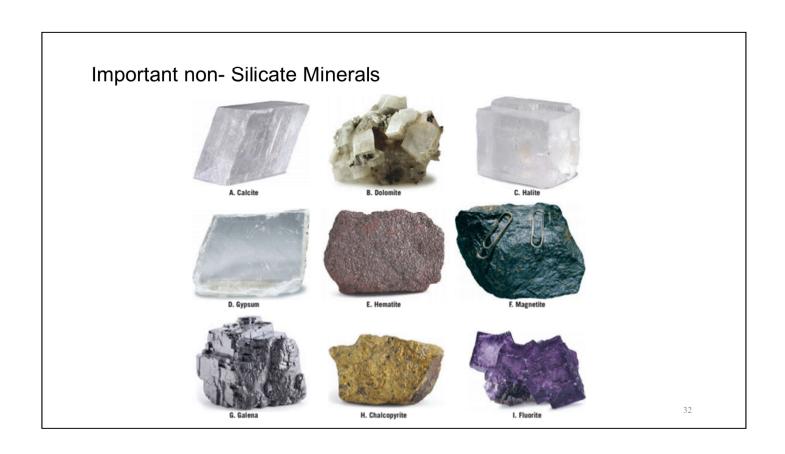
2.4 Check Questions

- 1. Define *luster*.
- 2. Why is color not always a useful property in mineral identification? Give an example of a mineral that supports your answer.
- 3. What differentiates cleavage from fracture?
- 4. What do we mean when we refer to a mineral's tenacity? List three terms that describe tenacity.
- 5. What simple chemical test is useful in the identification of the mineral calcite?

2.5 Mineral Groups

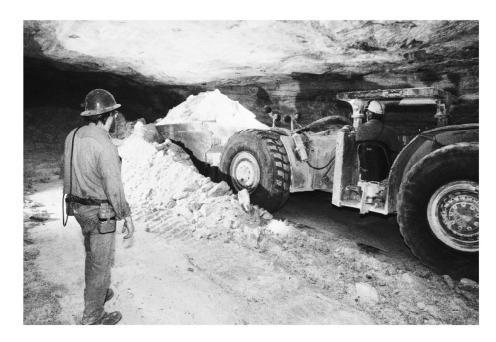

- Eight elements compose most rock-forming minerals:
 - oxygen (O),
 - silicon (Si),
 - aluminum (Al)
 - iron (Fe)
 - calcium (Ca)
 - sodium (Na)
 - potassium (K)
 - magnesium (Mg)




Rock-forming silicates

- Most common mineral group
- Contain the silicon-oxygen tetrahedron (molecule)
 - Four oxygen atoms surrounding a much smaller silicon atom
 - Combines with other atoms to form the various silicate structures

The silicate $(SiO_4)^{-4}$ molecule


Natural Resources

- Renewable
 - Can be replenished in relatively short time spans
 - Corn, wind, water, etc.
- Nonrenewable
 - Earth has fixed quantities
 - Oil, aluminum, natural gas, coal

Minerals

- Mineral resources
 - Reserves are already identified deposits
 - Ores are useful metallic minerals that can be mined at a profit
 - Economic factors may change and influence a resource

An underground halite (salt) mine

Copper Mining

Turning Point slides removed

Check Questions

 Obsidian is a glass that formed when lava cools so quickly that the atoms to not have a chance to arrange themselves in crystals. Is obsidian a crystal? Explain your reasoning.

Virtual Mineral ID Activity

• https://www.wiley.com/college/strahler/0471669695/interactivities/flash/mineralogy/mineralogy.htm

39

- Work this on your own!